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 ABSTRACT   

This paper introduces an attention-guided channel to pixel convolution network for a fully automatic segmentation of 

retinal layers with choroidal neovascularization from optical coherence tomography (OCT) images. The proposed 

framework, consists of two new strategies for retinal layers segmentation: Channel to Pixel Block and Attention block. To 

deal with the contrast reduction of adjacent retinal layers caused by choroidal neovascularization, we firstly design a 

Channel to Pixel Block to convert particular channels into pixels in one bigger feature map, followed by a convolution 

layer optimized by a novel edge loss. Faced with large morphological changes of retinal layers, the attention mechanism 

is then introduced to extract more context information. The proposed method was trained on augmented 1280 OCT images 

and tested on 384 OCT images with choroidal neovascularization. The experimental results showed that the proposed 

method outperformed the state-of-art methods for retinal OCT image segmentation. 
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1. INTRODUCTION  

Age-related macular degeneration (AMD) is the leading cause of blindness among older over 50 worldwide [1]. Choroidal 

neovascularization (CNV), characterized by the growth of neovascularization, usually between retinal pigments epithelial 

and choroid, is a typical characteristic of AMD in advanced stage [2]. Since CNV will lead to serious visual damage [1], 

it is necessary to accurately segment the retinal layers with CNV to assist the diagnosis.  

Optical coherence tomography (OCT) has been widely used in CNV diagnosis recently due to its non-invasive and high 

resolution [3]. Computer-aided image segmentation becomes popular as manual segmentation is inefficient. As shown in 

Fig.1, (a) normal retinal layers are displayed in a B-scan slice OCT image, (b)-(d) large morphological changes and blurry  

                             

(a)                                                   (b)                                (c)                               (d) 

Figure 1. Retinal layers in B-scan OCT images. (a) Normal retinal layer. (b) - (d) abnormal retinal layer: large 

morphological changes and blurry boundaries caused by CNV. 
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boundaries appear due to CNV. Therefore, retinal layer segmentation in OCT images of CNV patients is a challenging 

task. 

In this paper, we introduce an attention-guided channel to pixel convolution network to segment the retinal layer into 

background and 7 layers. The proposed network provides several advantages: 1) the edge of the retinal layer can be 

segmented accurately; 2) layers with large morphological changes can be completely divided by studying abundant context 

information. 
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(b)                                                                                   (c) 

Figure 2. Overview of the proposed network. (a) The architecture of the proposed Attention-guided Channel to Pixel 

Convolution Network architecture. (b) CP block: pixel shuffle is used to help up-scaling. (c) Attention Block, ⊕ denotes 

element-wise sum and ⊗ denotes spatial element-wise multiplication. 
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2. METHODS 

The proposed deep learning architecture is inspired by U-Net [4] and ReLayNet [5] architectures, as shown in Fig.2 (a). 

To further improve the segmentation performance especially in images with CNV, we propose firstly a Channel to Pixel 

block (CP block) with an edge loss function, helping segmenting the blurry boundary between two retinal layers. Secondly,  

the attention mechanism is integrated into the network to deal with large morphological changes of retinal layers. The 

specific description is as follows: 

2.1 Channel to Pixel Block (CP block) 

Un-pooling is the most commonly used method for up-sampling, while it does not fully utilize the channel information. 

We design a CP block, as shown in Fig.2 (b) to extract more information from different channels. The proposed CP block 

contains two branch networks. One branch network consists of one-pixel shuffle layer, one convolutional layer, one batch 

normalization layer (BN), and one PReLU activation function layer. Another branch network consists of one un-pooling 

layer. The whole process of CP block operation can be described as, 

𝐼𝑐𝑝 = 𝑐𝑜𝑛𝑐𝑎𝑡[𝜎(𝑊𝑐𝑝 ∙ 𝑃𝑆(𝐼𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑐𝑝),  𝑓𝑢𝑛𝑝𝑜𝑜𝑙(𝐼𝑖𝑛𝑝𝑢𝑡)]                                           (1) 

where 𝐼𝑖𝑛𝑝𝑢𝑡 ∈ ℝ𝐻×𝑊×𝑟2𝐶 indicates the input; 𝐼𝑐𝑝 ∈ ℝ𝐻×𝑊×
5

4
𝑟2𝐶

 indicates the output; 𝜎 represents batch normalization and 

PReLU activation function; 𝑃𝑆(∙)  is the pixel shuffle operation; 𝑊𝑐𝑝 ∈ ℝ𝐻×𝑊×
1

4
𝑟2𝐶

  and 𝑏𝑐𝑝 ∈ ℝ1×1×
1

4
𝑟2𝐶

  are the 

convolution’s (kernel 𝑟 × 𝑟   stride 
𝑟

2
) weight and bias; 𝑓𝑢𝑛𝑝𝑜𝑜𝑙(∙)  is the un-pooling operation, and 𝑐𝑜𝑛𝑐𝑎𝑡[∙]  is 

concatenation computation of feature maps in the channel domain. The shape change of the feature map is shown in Table1. 

 
Table 1.  Shape change of feature maps in CP block. 

Input feature map shape Layer Name Output feature map shape 

𝐻 × 𝑊 × 𝑟2𝐶 Pixel Shuffle layer 𝑟𝐻 × 𝑟𝑊 × 𝐶 

𝑟𝐻 × 𝑟𝑊 × 𝐶 Convolution layer 2𝐻 × 2𝑊 ×
𝑟

4

2

𝐶 

2𝐻 × 2𝑊 ×
𝑟

4

2

𝐶 BN&PReLU 2𝐻 × 2𝑊 ×
𝑟

4

2

𝐶 

𝐻 × 𝑊 × 𝑟2𝐶 Un-pooling layer 2𝐻 × 2𝑊 × 𝑟2𝐶 

2𝐻 × 2𝑊 × 𝑟2𝐶&2𝐻 × 2𝑊 ×
𝑟

4

2
𝐶 Concatenation computation 2𝐻 × 2𝑊 ×

5𝑟2

4
𝐶 

 

In details, the pixel shuffle layer, as shown in Fig.3, shuffles the pixels periodically from different channels into a bigger 

feature map by an upscale factor 𝑟2.  

Notice that Fig.3 is only an example to explain how Pixel Shuffle Layer works, the actual input feature map size and 

upscale factor depends on specific layers. Assumed that the shape of the input feature map for CP block is 𝐻 × 𝑊 × 𝑟2𝐶, 

H refers to the height of the input feature map; W refers to the width. 𝑟2𝐶 refers to the number of channels. The specific 

position transformation relationship of pixel shuffling operation can be described as,  

𝐼𝑝𝑠[𝑖, 𝑗, 𝑐] =  𝐼𝑖𝑛𝑝𝑢𝑡[𝑓𝑙𝑜𝑜𝑟(𝑖/𝑟),  𝑓𝑙𝑜𝑜𝑟(𝑗/𝑟), 𝑟2𝑐 + (𝑚𝑜𝑑(𝑖, 𝑟))𝑟 + 𝑚𝑜𝑑(𝑗, 𝑟)]                              (2) 

 𝐼𝑝𝑠 = 𝑃𝑆(𝐼𝑖𝑛𝑝𝑢𝑡)                                                                                 (3) 

𝐼𝑝𝑠 is the output of pixel shuffle; 𝑚𝑜𝑑(𝑥, 𝑦) = 𝑥%𝑦; i ∈ [0,2𝐻], j ∈ [0,2𝑊], c ∈ [0, 𝐶]. The Pixel Shuffle Layer shuffle 

pixels from particular channels into pixels in one particularly bigger feature map without loss of channel information.  

A convolution operation is then used to extract features from the enlarged feature map. We force the convolution output 

has the same shape with un-pooling layer in parallel by setting the convolution stride to 
𝑟

2
. 
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Figure 3. An example of the Pixel Shuffle, in which we convert pixels from 4 channels into a bigger feature map with 1 

channel. As the feature map is magnified 22 after Pixel Shuffle, the upscale factor 𝑟2 equals to 22 here. 

The adjacent retinal layers’ boundary in OCT images of objects suffering from CNV, is blurry and difficult to distinguish. 

In order to guide the CP block to extract effective edge features, we propose an auxiliary edge loss as 

𝐿𝑜𝑠𝑠𝑒𝑑𝑔𝑒 = −𝑙𝑜𝑔 |
𝑠𝑜𝑏𝑒𝑙(𝐼𝑝)

𝑠𝑜𝑏𝑒𝑙(𝐼𝑐𝐺𝐴𝑁)
⁄ |                                                       (4) 

 𝐼𝑝 = 𝜎(𝑊𝑐𝑝 ∙ 𝑃𝑆(𝐼𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑐𝑝)                                                                 

(5) 

In which 𝐼𝑐𝐺𝐴𝑁 indicates the speckle noise reduction result of raw input [6]. The retinal layers boundary of 𝐼𝑐𝐺𝐴𝑁 get clearer 

than the raw image. The 𝐿𝑜𝑠𝑠𝑒𝑑𝑔𝑒  measures the similarity of boundary gradient between 𝐼𝑝  and the target 𝐼𝑐𝐺𝐴𝑁 . By 

optimizing the edge loss, the adjacent retinal layers’ gradient becomes bigger so that the edge of adjacent layers of the 

retina becomes clearer. 

2.2 Proposed Attention Module 

The proposed attention module adds the feature map 𝐼𝑖𝑛𝑝𝑢𝑡 at low resolution to the feature map 𝐼𝐻𝑅 at high resolution, and 

then multiply with high resolution input 𝐼𝐻𝑅, as shown in Fig.2 (c). The output feature map contains both local semantic 

information and global structural information. The output of the attention module can be represented as follows, 

𝐼𝑆𝑢𝑚 = 𝐼𝐻𝑅 ⊕  𝜎(𝑊𝑎𝑡𝑡 ∙ 𝑓𝑢𝑛𝑝𝑜𝑜𝑙(𝐼𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑎𝑡𝑡)                                                 (6) 

𝐼𝑀𝑢𝑙 = 𝐼𝐻𝑅 ⊗ 𝐼𝑆𝑢𝑚                                                                           (7) 

𝐼𝐴𝑡𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡[𝐼𝑀𝑢𝑙 ,   𝐼𝑐𝑝  ]                                                                      (8) 

where 𝑊𝑎𝑡𝑡 ∈ ℝ𝐻×𝑊×𝑟2𝐶  and 𝑏𝑎𝑡𝑡 ∈ ℝ1×1×𝑟2𝐶   are the convolution (kernel 3 × 3) weight and bias parameters. Here, 

⊕ denotes element-wise sum and ⊗denotes spatial element-wise multiplication.  𝐼𝑀𝑢𝑙 ∈ ℝ2𝐻×2𝑊×𝑟2𝐶   and 𝐼𝐴𝑡𝑡 ∈

ℝ2𝐻×2𝑊×
9

4
𝑟2𝐶

. 

As the retina with CNV has large morphological changes, it is very important to enhance the location information of the 

layer where the abnormal neovascularization appears. Low resolution feature map 𝐼𝑖𝑛𝑝𝑢𝑡 , has rich retinal structure 

information. The structure information, especially the location of the layer with abnormal vessels, will be very useful for 

the complete segmentation of the retina. 

The high-resolution feature map 𝐼𝐻𝑅 contains rich detail information, such as retinal boundary. In Eq. (6), we add the  high-

resolution feature map 𝐼𝐻𝑅 and the low-resolution feature map 𝐼𝑖𝑛𝑝𝑢𝑡   which shape has transformed as large as 𝐼𝐻𝑅 by an 

un-pooling layer and convolutional layer.  

Therefore  𝐼𝑆𝑢𝑚 has both layer position information and layer boundary information. Then   𝐼𝑆𝑢𝑚 can be considered as the 

attention information  multiply with 𝐼𝐻𝑅  effectively increasing the spatial structure information of 𝐼𝐻𝑅. Finally, 𝐼𝑀𝑢𝑙  and 

the result of the CP block 𝐼𝑐𝑝 are concated. 𝐼𝑐𝑝 has rich edge information, so the output of the attention module 𝐼𝐴𝑡𝑡 has 

abundant global and local information. 

Input: 4×8×8 Output: 1×16×16 

Channel 1 

Channel 4 

Channel 3 

Channel 2 

Pixel Shuffle 
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Figure 4. Segmentation result of retinal layers with CNV. Green boxes: original images; Orange boxes: ground truth; Blue 

boxes: segmentation results. 

2.3 Loss Function 

The loss function is inspired by ReLayNet. Total loss in this paper includes weighted multi-class logistic loss [5], Dice loss 

[5] and proposed Edge loss. 

The total loss function is shown as follows, 

𝐿𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜆1𝐿𝑜𝑠𝑠𝑙𝑜𝑔𝑙𝑜𝑠𝑠 + 𝜆2𝐿𝑜𝑠𝑠𝑑𝑖𝑐𝑒 + 𝜆3𝐿𝑜𝑠𝑠𝑒𝑑𝑔𝑒_𝐶𝑃1 + 𝜆4𝐿𝑜𝑠𝑠𝑒𝑑𝑔𝑒_𝐶𝑃2                                 (9) 

where 𝐿𝑜𝑠𝑠𝑙𝑜𝑔𝑙𝑜𝑠𝑠 , 𝐿𝑜𝑠𝑠𝑑𝑖𝑐𝑒     𝐿𝑜𝑠𝑠𝑒𝑑𝑔𝑒_𝐶𝑃1 𝑎𝑛𝑑  𝐿𝑜𝑠𝑠𝑒𝑑𝑔𝑒_𝐶𝑃2  represent the weighted multi-class logistic loss, the Dice 

loss, Edge loss in CP block 1 and Edge loss in CP block 2, respectively. The weight terms in loss function in Eq. (9) are 

set as 𝜆1 = 1, 𝜆2 = 1, 𝜆3 = 1𝑒−5, 𝜆4 = 1𝑒−6.  

In this paper, region weights of weighted multi-class logistic loss are defined as shown in Eq. (10), 

𝜔𝑙𝑜𝑔𝑙𝑜𝑠𝑠(𝑥) = {
10, 𝑥 ∈ 𝑟𝑒𝑡𝑖𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟′𝑠 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
5, 𝑥 ∈  𝑟𝑒𝑡𝑖𝑛𝑎                                     
1, 𝑜𝑡ℎ𝑒𝑟𝑠                                              

                                               (10) 

Here, 𝑥 is the pixel of input image; 𝜔𝑙𝑜𝑔𝑙𝑜𝑠𝑠 is the region weights. Pixels belong to 𝑟𝑒𝑡𝑖𝑛𝑎 region bigger weights than 

background region. Pixels on retinal layer’s boundary the biggest weight.  

3. RESULTS 

The dataset contained 1664 OCT B-scan images acquired by a Topcon DRI-OCT. The training set includes 1280 images, 

augmented per training epoch. The testing set has 384 images. Each OCT images contain 512 × 128 pixels, with pixel size 

of 11.74 × 47.24 × 1.96 μm3. The kernel size of convolution in the proposed network is 3×5, and the stride is 2. The 

upscale factor 𝑟2 used sets to 162 in our network, both in CP block 1 and CP block 2.  

3.1 Qualitative comparison of proposed network with comparative methods 

The representative images obtained by the proposed method is shown in Fig.4. Images in green boxes are the original 

images, images in orange boxes are ground truth, and images in blue boxes are segmentation results. 

To quantitatively evaluate the performance of our proposed method, we compared the proposed method segmentation 

results with ReLayNet and U-Net at Dice coefficient, Intersection over Union (IoU) and Accuracy of each class. As shown 

in Table 2, the best performance is shown by bold. Overall, Attention-guided Channel to Pixel Convolution Network 

showed the excellent segmentation in the background and other seven retinal layers. Especially under the Dice coefficient, 

the proposed network showed the best performance in various categories. 

In this challenging layer7, where the neovascularization appears, the proposed network surprisingly achieved than 94.56% 

under Dice coefficient, while the second best performance by ReLayNet only got 89.12%. Under IoU, our method got 

70.37% in layer5, 5.01% above the second-best performance by U-Net. 

background 

layer1 

layer3 

layer5 
layer7 

 

layer2 

layer4 

layer6 
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Table 2. Comparisons with comparative methods. The best performance is shown by bold. 

 method background layer1 layer2 layer3 layer4 layer5 layer6 layer7 

Dice 
Proposed 0.9980  0.9374  0.8715  0.8490  0.8756  0.8258  0.8964  0.9456  

ReLayNet 0.9949  0.9286  0.8526  0.8264  0.8460  0.7828  0.8866  0.8912  

U-Net 0.9941  0.9299  0.8522  0.8119  0.8295  0.7679  0.8646  0.8708  

IoU 
Proposed 0.9961 0.8822 0.7723 0.7379 0.7790 0.7037 0.8123 0.8969 

ReLayNet 0.9989 0.8666 0.7433 0.7049 0.7337 0.6441 0.7969 0.8052 

U-Net 0.9949 0.8703 0.7566 0.7299 0.7770 0.6536 0.7762 0.8582 

Acc 
Proposed 0.9977 0.9447 0.8449 0.8455 0.9168 0.7823 0.8840 0.9624 

ReLayNet 0.9917 0.9266 0.8240 0.8507 0.8947 0.7899 0.8786 0.9244 

U-Net 0.9960 0.9362 0.8383 0.8614 0.8977 0.8140 0.9244 0.9059 

 

3.2 Ablation study 

We do ablation study to reveal effect of CP block, the attention mechanism and the edge loss function. 

Table 3. Comparison with baselines. The best performance is shown by bold. 

method CP block 
Attention 

module 
edge loss 

Per class 

dice 
mIoU mPA 

Proposed √ √ √ 0.8999 0.8226  0.8973 

CPANet √ √ × 0.8826 0.7971 0.8882 

CPNet √ × × 0.8823 0.8015 0.8858 

Baseline × × × 0.8761 0.7855 0.8850 

 

In Table 3, CPANet refers to network with CP block and Attention Module; CPNet refers to network with CP block; 

Baseline refers to network without CP block, Attention Module and edge loss. “√” means the method has this block  while 

“×” means the method does not has this block. 

Per class dice, mean Intersection over Union (mIoU), mean pixel accuracy (mPA) were used to evaluate segmentation 

performance of different methods. It can be found from Table 3 that the three modules proposed in this paper are proved 

to be valid by comparing network in pairs. Trying more different ways of attention will be our follow-up. 

 

4. CONCLUSIONS 

In this paper, we proposed an attention-guided channel to pixel convolution network for retinal layers segmentation in 

OCT images with CNV. The method includes two new blocks: a channel to pixel block and an attention module. Due to 

data augmentation with flipping and translation in four directions, the proposed method needs only a few labeled images. 

Experiments showed the proposed method can accurately segment the retinal layers. 
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